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Abstract

A new protocol is presented that efficiently implements a reliable, causally or-

dered multicast prinlitive and is easily extended into a totally ordered one. Intended

for use in the Isis toolkit, it offers a way to bypass the most costly aspects of Isls

while benefiting from virtual synchrony. The facility scales with bounded overhead.

Measured speedups of more than an order of magnitude were obtained when the pro-

tocol was implemented within Isls. One conclusion is that systems such as Isis can

achieve performanc(, competitive with the best existing multicast facilities - a finding

contradicting the widespread concern that fault-tolerance may be unacceptably costly.
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1 Introduction

The Isis Toolkit [BJKS88] provides a variety of tools for building software in loosely

coupled distributed environments. The system has been successful in addressing problems

of distributed consistency, cooperative distributed algorithms, and fault-tolerance. At the

time of this writing, ISIS was in use at more than 250 locations worldwide.

Two aspects of Isis are key to its overall approach:

• An implementation of virtually synchronous process groups.

• A collection of atomic multicast protocols with which processes and group members

interact with groups.

Although Isls supports a wide range of mnlticast protocols, a protocol called CBCAST

accounts for the majority of communication in the system; in fact, many of the Isls tools

are little more than invocations of this communication primitive. For example, the Isls

replicated data tool uses a single (asynchronous) CBCAST to perform each update and

locking operation; reads require no communication at all. A consequence is that the cost

of CBCAST represents the dominant performance bottleneck in the Isls system.

The initial Isls CBCAST protocol was costly in part for structural reasons, and in part

because of the protocol used. The implementation was within a protocol server, hence all

CBCAST communication was via an indirect path. Independent of the cost of the proto-

col itself, this indirection was tremendously expensive. With respect to the protocol used,

our initial implementation favored generality over specialization, permitting extremely

flexible destination addressing, and using a pig_ybacldng mechanism that achieved a de-

sired ordering property but required a garbage collection mechanism. On the other hand,

this structure seemed to be the only one capable of supporting a powerful, general set of

programming tools like the ones in our toolkit: simpler protocols often simply overlook

critical forms of functionality, which may explain why so few have entered widespread

use. Particularly valuable to us has been the ability to to support multiple, possibly

overlapping process groups, and virtual synchrony [B:JKS88].

The protocol we present here is based on a causal ordering protocol originally developed by

Schiper [SES89]. Unlike our previous work, it assumes a preexisting virtually synchronous

programming environment like the one that Isls provides, although using few of its fea-

tures. Further, it supports a relatively restricted form of multicast addressing. Were our

work done outside of the context of Isis, this would seriously limit its generality. In our

implementation, however, messages that do not conform to these restrictions are simply

routed via the old, more costly algorithm. A highly optimized multicast protocol results

that bypasses the old Isls system and imposes very little overhead beyond that of the

message transport layer. The majority of Isis communication satisfies the requirements

of the bypass protocols and hence benefits from our work.

Our protocol uses a timestamping scheme, and in this respect resembles prior work by



Ladkin [LL86]andPeterson[PBS89].However,ourresultsaresubstantiallymoregeneral.
Themostimportant diff_,rencesarethese:

• Peterson'sPsync-b_tsedprotocolcanbe usedonly in systems composed of a single

process group, our_, supports multiple, possibly overlapping process groups.

• Both Peterson's and Ladkin's protocols have overhead linear in the number of pro-

cesses that ever pa_'ticipated in the application, which could be large; our overhead

is bounded and small.

Like Peterson's and Ladkin's protocols, our basic protocol provides for message delivery

ordering that respects causality in the sender (CBCAST), but is readily extended into a

more costly protocol that provides a total delivery ordering even for concurrent invocations

(ABCAST).

The bypass protocol sui+e lets users select the multicast properties desired for an appli-

cation. Choices include a "raw" delivery service achieving extremely high performance

but with minimal reliability guarantees, multicast with atomicity and FIFO delivery, and

causal or total ordering. This approach permits the user to pay for just those reliability

and ordering properties needed by the application.

The paper is structured ;_s follows. Section 2 reviews the multicasting problem and defines

our terminology. Sections 3 and 4 introduce our new technique. Section 5 discussions

extensions of the CBCAST protocol, including the bypass ABCAST protocol. The

costs of our various primitives are measured in Section 6.

2 Execution model

2.1 Basic system model

The system is composed of processes P = {PI,P2,.-.,p,} with disjoint memory spaces.

Initially, we assume th_Lt this set is static and known in advance; later we relax this

assumption. Processes f_il by crashing detectably (a fail-stop assumption); notification is

provided by Isis in a mannel described below. In many situations, processes will need

to cooperate. For this purpose, they form process groups. Each such group has a name

and a set of member piocesses; members join and leave dynamically; a failure causes a

departure from all groups to which a process belongs. The members of a process group

need not be identic_, nor is there any limit on the number of groups to which a process

may belong. The set of groups is denoted by G = {gl,g2...}. In typical settings, the

number of groups will be large and processes will belong to several groups.

Our system model is uILusual in assuming an external service that implements the pro-

cess group abstraction. The interface from a process to this service will not concern us

here, but the manner i:_ which the service communicates to a process is highly relevant.



A view of a process group is a list of its members. A view sequence for g is a list

viewo(g), viewl(g), ..., view,(g), where

1. viewo(a) = ¢.

2. Vi : viewi(g)C_P, where P is the set of all processes in the system.

3. viewi(g) and viewi+l(g) differ by the addition or subtraction of exactly one process.

We assume that some sort of process group service computes new views and communicates

them to the members of the groups involved. Processes learn of the failure of other group
members only through this view mechanism, never through any sort of direct observation.

We assume that direct communication between processes is always possible; the software

implementing this is called the message transport layer. Within our protocols, processes

always communicate using point-to-point and multicast messages; the latter may be trans-

mitted using multiple point-to-point messages if no more efficient alternative is available.

The transport communication primitives must provide lossless, uncorrupted, sequenced

message delivery. Our approach permits application builders to define new transport pro-

tocols, perhaps to take advantage of special hardware. Our initial implementation uses

unreliable datagrams, but has an experimental protocol that exploits ethernet hardware
multicast.

The execution of a process is a partially ordered sequence of events, each corresponding

to the execution of an indivisible action. An acyclic event order, denoted p reflects

the dependence of events occurring at process p upon one another. The event sendp(m)

denotes the transmission of m by process p to a set of 1 or more destinations dests(m); the

receive event is denoted revp(m). We omit the subscript when the context is unambiguous.

If Idests(m)l > 1 we will assume that send puts messages into all communication channels

in a single action that might be interrupted by failure, but not by other send or rcv actions.

We denote by rcvp(viewi(g)) the event by which a process p belonging to g "learns" of

views(g).

We distinguish the event of receiving a message from the event of delivery, since this allows

us to model protocols that delay message delivery until some condition is satisfied. The

delivery event is denoted deliver(m) where rev(m)&deliver(m).

2.2 Properties required of multicast protocols

Although Isis makes heavy use of virtual synchrony, it will not be necessary to formalize

this property for our present discussion. However, the support of virtual synchrony places

several obligations on the processes in our system. First, when a process multicasts a

message m to group g, dests(m) must be the current membership of g. Secondly, when

the group view changes, all messages sent in the prior view must be "flushed" out of the

system (delivered) before the new view may be used. Finally, messages must satisfy a



failure atomicityproperty: if a messagem is delivered to any member of a group, and it

stay operational, m mus_ be delivered to all members of the group even if the sender fails

before completing the transmission.

The multicast protocols _:hat interest us here also provide delivery ordering guarantees. As

in [Lam78], we define tl_e potential causality relation for the system, ---*, as the transitive
closure of the relation d,_fined as follows:

1. If 3p : ePe ', then e---_e'

2. Vm : send(m)_r_v(m)

CBCAST satisfies a causal delivery property:

If m and m I are CBCAST's and send( m )---*send( m') then

Vpedests(m)rldests(rn') : deliver(m) P-Ldeliver(m').

If two CBCAST mess;tges are concurrent, the protocol places no constraints on their

delivery ordering at overlapping destinations.

ABCAST extends the CBCAST ordering into a total one:

If rn and rn_ are ABCAST's then either

1. Vpe dests( m )lldests( m') : deliver( m )P deliver( m'), or

2. Vpe dests( rn )ndests( m') : deIiver( m') P-Ldeliver( m ).

Because the ABCAST protocol orders concurrent events, it is more costly than CB-

CAST; requiring synchronous solutions where the CBCAST protocol admits efficient

asynchronous solutions. Birman and Joseph [BJ89] and Schmuck [Sch88] have exhibited a

large class of algorithm_, that can be implemented using asynchronous CBCAST. More-

over, Schmuck has shown that in many settings algorithms specified in terms of ABCAST

can be modified to use CBCAST without compromising correctness.

The protocols presented here all assume that processes only multicast to groups that they

are members of, and that all multicasts are to the full membership of a single group.

For demonstrating liveness, we will assume that any message sent by a process is eventually

received unless the sender or destination fails, and that failures axe eventually reported

by ISIS.

3 The CBCAST bypass protocol

This section presents two basic CBCAST protocols for use within a single process group

with fixed membership. Both use timestamps to delay messages that arrive out of causal

order. The section that follows extends these schemes and then merges them to obtain a

single solution for use with multiple, dynamic process groups.
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3.1 Timestamping protocols

We begin by describing two protocols for assigning timestamps to messages and for com-

paring timestamps. The protocols are standard except in one respect: whereas most

timestamping protocols count arbitrary "events", the ones defined here count only send
events.

3.2 Logical time

The first timestamping protocol is based on one introduced by [Lain78], called the logical

clock protocol. Each process p maintains an unbounded local counter, LT(p), which it

initializes to zero. For each event send(m) at p, p sets LT(p) = LT(p) + 1. Messages

are timestamped with the sender's incremented counter. A process p receiving a message

with timestamp LT(m)sets LT(p)= max(LT(p),LT(m)). As in [Lam78], one can show

that if send( m )--* send( m') then LT(m) < LT(m'). The converse, however, does not hold:

the protocol may order messages that were sent concurrently.

Note that the LT counter for a process is updated at the rcv event, as opposed to the

deliver event, for an incoming message. We make use of this property in the development
below.

3.3 Vector time

A second timestamping protocol is based on the substitution of vector times for the local

counters in the logical time protocol. Vector times were proposed originally in [Mar84];

other researchers have also used them [Fid88,Mat89,LL86,Sch88]; our use of them is moti-

rated by an protocol presented in [SES89]. In comparison with logical times, this protocol

has the advantage of representing --. precisely.

A vector time for a process Pi, denoted VT(pi), is a vector of length n (where n = tP[),

indexed by process-id.

1. When Pi starts execution, VT(pi) is initialized to zeros.

2. For each event send(m) at Pi, VT(pi)[i] is incremented by 1.

3. Each message sent by process Pi is timestamped with the incremented value of

VT(pi).

4. When process pj delivers a message m from pi containing VT(m), pj modifies its

vector time in the following manner:

¥kG1..n : VT(pj)[k] = max( VT(pj)[k], VT(m)[k])

Rules for comparing vector times are:
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1. VT_ <_ VT2 iffVi: VT_[i] <_ VT2[i]

2. VT_ < VTa if VT_ <_ VT2 and 3i: VT_[i] < VT2[i]

Notice that in contrast to the rule for LT(p), VT(p) is updated at the deliver event for

an incoming message. We will make use of this distinction below.

It can be shown that given messages m and m', send(m)_send(m') iff VT(m) < VT(m')

[Mat89,Fid88]: vector timestamps represent causality precisely. This constitutes the fun-

damental property of w, ctor times, and the primary reason for our interest in such times

as opposed to logical ones.

3.4 Causal message delivery

Recall that if processes communicate using CBCAST, all messages must be delivered in

an order consistent with causality. Suppose that a set of processes P communicate using

only broadcasts to the full set of processes in the system; that is, Vm : dest.s(m) = P. This

hypothesis is unrealistic, but Section 4 will adapt the resulting protocol to a settings with

multiple process groups. 1 We now develop two delivery protocols by which each process p

receives messages sent to it, delays them if necessary, and then delivers them such that:

If send( m )-* send( m') then deliver( m )_deliver( m').

3.4.1 LT protocol

Our first solution to the problem is based on logical clocks; and is referred to as the LT

protocol from here on. It is related to other solutions that have appeared in the literature

[Lam78,CASD86] and will be used as a building block later on. The basic technique will

be to delay a message uatil messages with at least as large a timestamp has been received

from every other process in the system. However, since this would only work if every

process sends an infinite stream of multicasts, a channel flushing mechanism is introduced

to avoid potentially unbounded delays.

Say that the channel from process Ps to Pi has been flushed at time LT(m) if Pi will

never receive a message, m' from pj with LT(m') < LT(m). Flushing can be achieved

by pinging. To ping a channel, Pi sends Pi a timestamped inquiry message inq, but

without first incrementing LT(pi). On receiving an inquiry pj, as usual, sets LT(p_) =

max(LT(p)), LT(inq)) and replies with an ack message containing LT(pj), without mod-

ifying LT(pj). On receiving the ack Pi, as usual, sets LT(pi) = max(LT(pi), LT(ack)).

If no new messages are being multicast, pinging advances LT(pi) and LT(pi) to the same

value.

The protocol is as follows:

IThis hypothesis is actu_dly used only in the VT delivery protocol.
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1. Before sending message m, process pi increments LT(pi) and then timestamps m.

. On receiving message m, process pj sets LT(pj) = max(LT(pj), LT(m)). Then, pj

delays m until for all k # i, the channel between pj and Pk has been flushed for time

LT(m). pj does not delay messages received from itself.

3. If m has the minimum timestamp among messages satisfying (2), m may be deliv-
ered.

To prove that causM delivery is achieved, consider two messages such that send(m1 )--+send(m2 ),

and hence LT(ml) < LT(m2). There are two cases:

. The same process sends ml and m2. Because communication is FIFO, ml will be

received before m2, and because LT(ml) < LT(m2), condition 3 guarantees that

ml will be delivered before m2.

. Different processes send ml and m2. According to condition 2, m2 can only be

delivered when all channels have been flushed for LT(m2). As communication is

FIFO, and LT(ml) < LT(m2), it follows that ml has been received. Condition 3

then guarantees that ml will be delivered before m2.

The communication cost, however, is high: 2n - 3 messages may be needed to flush

channels for every message delivered, hence to multicast one message, O(n 2) messages

could be transmitted. For infrequent multicasting, this cost may well be tolerable; the

overhead would be unacceptable if incurred frequently. However, in place of pinging,

processes can periodically multicast their logical timestamps to all other group members.

Receipt of such a multicast flushes the channels: at worst, a received message will be

delayed until the recipient has multicast its timestamp and all other processes have done

a subsequent timestamp multicast. The overhead of the protocol can now be tuned for a

given environment. 2

3.4.2 VT protocol

A much cheaper s_olution can be derived using vector timestamps; we will refer to this

as the VT protocol. The idea is basically the same as in the LT protocol, but because

VT(m)[k] indicates precisely how many multicasts by process Pk precede m, a recipient

of m will know precisely how long m must be delayed prior to delivery; namely, until

2Readers familiar with the A-T real-time protocols of [CASD86] will note the similarity between that
protocol and this version of ours. Clock synchronization (on which the A-T scheme is based) is normally
done using periodic multicasts [ST87]. This modification recalls suggestions made in [Lam78], and makes
logical clocks behave like weakly synchronized physical clocks. Clock synchronization algorithms with
good message complexity are known, hence substitution of a A-T based protocol for the logical clock-
based protocol in our "combined" algorithm, below, is an intriguing direction for future study.



VT(m)[k] messages haw _-been delivered from pk. Since ---*is an acyclic order accurately

represented by the vector time, the resulting delivery order is causal and deadlock free.

The protocol is as follows:

1. Before sending m, process Pi increments VT(pi)[i] and timestamps m.

2. On reception of message m sent by Pi and timestamped with VT(m), process pj _ pl

delays m until

VT(m)[i] = VT(pj)[i] + 1

Vk # i: VT(m)[k] _< VT(pj)[k]

Process pj need not delay messages received from itself.

3. When a message m is delivered, VT(pj)[i] is incremented (this is simply the vector

time update protocol from Section 3.3).

Step 2 is the key to tt_e protocol. This guarantees that any message m _ transmitted

causally before m (and hence with VT(m') < VT(m)) will be delivered at pj before m is

delivered. An example _n which this rule is used to delay delivery of a message appears

in Figure 1.

Pl

P3

Time

Figure 1: Using the VT rule to delay message delivery

The correctness of the protocol will be proved in two stages. We first show that causality is

never violated (safety) _md then we demonstrate that the protocol never delays a message

indefinitely (liveness).

Safety. Consider the a_:tions of a process pj that receives two messages rnl and rn2 such

that send(ml )---*send(m2).
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Case 1. ml and m2 are both transmitted by the same process Pi. Recall that we

assumed a lossless, sequenced communication system, hence pj receives ml before

m2. By construction, VT(ml) < VT(m2), hence under step 2, m2 can only be
delivered after ml has been delivered.

Case 2. ml and m2 are transmitted by two distinct processes Pi and Pi,. We will show

by induction on the messages received by process pj that m2 cannot be delivered

before ml. Assume that ml has not been delivered and that pj has received k

messages.

Observe first that send( ml )--* send( m2 ), hence VT(ml) < VT(m2) (basic property

of vector times). In particular, if we consider the field corresponding to process p,,

the sender of ml, we have

VT(ml)[i] < VT(m2)[i] (1)

Base case. The first message delivered by pj cannot be m2. Recall that if no

messages have been delivered to pj, then VT(pi)[i ] = O. However, VT(ml)[i] >
0 (because ml is sent by Pi), hence VT(m2)[i] > 0. By application of step 2 of

the protocol, m_ cannot be delivered by pj.

Inductive step. Suppose Pi has received k messages, none of which is a message

m such that send( ml )-* send( m ). If ml has not yet been delivered, then

VT(pj)[i] < VT(ml)[i] (2)

This follows because the only way to assign a value to VT(pi)[i ] greater than

VT(ml)[i] is to deliver a message from Pi that was sent subsequent to ml, and

such a message would be causally dependent on ml. From relations 1 and 2 it
follows that

YT(pj)[i] < VT(m2)[i]

By application of step 2 of the protocol, the k + 1'st message delivered by pj
cannot be m2. []

Liveness. Suppose that there exists a broadcast message m sent by process Pi that can

never be delivered to process pj. Step 2 implies that either:

VT(m)[i] # VT(pj)[i] + 1, or

3k _ i: VT(m)[k] > VT(pi)[k ]

and that m was not transmitted by process Pi- We consider these cases in turn.

1. VT(m)[i] i_ VT(pj)[i] + 1, that is, m is not the next message to be delivered from Pi

from pj. Since all messages are multicast to all processes and channels axe lossless

and sequenced, it follows that there must be some message m _ sent by Pl that Pi

received previously, has not yet delivered, and with VT(m')[i] = VT(pi)[i ] + 1. If
m t is also delayed, it must be under the other case.
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. 3k # i : VT(m)M > VT(pj)[k]. Let n = VT(m)[k]. The n'th transmission of

process Pk, must be some message m_m that has either not been received at pj,

or was received and is delayed. Under the hypothesis that all messages are sent

to all processes, m' was already multicast to pj. Since the communication system

eventually deliver_,, all messages, we may assume that m' has been received by pj.

The same reasoning that was applied to m can now be applied to m'. The number

of messages that must be delivered before m is finite and > is acyclic, hence this

leads to a contradiction. []

4 Extensions to the basic protocol

Neither of the protocols in Section 3 is suitable for use in a virtually synchronous setting

with multiple process groups and dynamically changing group views. This section first

extends the simple VT CBCAST protocol of Section 3.4.2 into one suitable for use

with multiple but static process groups, but arrives at a protocol subject to a significant
constraint on what we call the communication structure of the system. Then, we show

how to combine the pro_,ocol with other mechanisms, notably the LT CBCAST protocol

of Section 3.4.1, to overcome this limitation. We arrive at a powerful, general solution.

4.1 Transmission limited to within a single process group

The first extension to _he VT protocol is concerned with processes that multicast only

within a single process group at a time. This problem is clearly trivial if process groups

don't overlap, a property that can be deduced at runtime (see Section 4.4.4). On the other

hand, we have assumed that overlap will not be uncommon. Such scenarios motivate the

series of changes to the algorithm presented in this section and the ones that follow.

The first change is concerned with processes that belong to multiple groups, e.g. a process

pi belongs to groups ga and gb, and multicasts only within groups. Multicasts sent by pi

to ga must be distinguished from those to gb, since a process pj belonging to gb and not

to ga that receives a message with VT(m)Lj ] = k will otherwise have no way to determine

how many of these k m_,ssages wcre sent to gb and hence- :=ede m causally. This leads us

to extend the single VT dock to multiple VT clocks; VTa is the logical clock associated

with group ga, and VT_[i] thus counts multicasts by process Pi to group ga. 3 Processes

maintain VT clocks for each group in the system, and attach all the VT clocks to every

message that they mnlticast.

The next change is to st_.'p 2 of the VT protocol. Suppose that process pj receives a message

m sent in group ga with sender Pi, and that pj also belongs to groups {gl, ..., g,} =- Gi.

Step 2 can be replaced by the following rule:

3Clearly, if pl is not a member of g_, then VT_[s] = O, thus allowing a sparse representation of the

timestamp. For clarity, we will continue to represent each timestamp VTg as a vector of length n, with a

special entry * for each process that is not a member of ga.

11



2' On reception of message m from p_ _ pj, sent in ga, process pj delays m until

2.1' VTa(m)[i] = VTa(pj)[i] + 1, and

2.2' Vk : (PkEg,, ^ k _ i): VTa(m)[k] <_ VT(pi)[k], and

2.3' Vg: (geG.,) : VTg(m) < VT_(pj).

As above, pj does not delay messages received from itself.

Figure 2 illustrates the application of this rule in an example with four processes into

groups identified as pl ...p4. Processes pl, P2 and P3 belong to group G1, and processes P2,

P3 and P4 to group Gs. Notice that ms and m3 are delayed at p3, because it is a member

of G1 and must receive ml first. However, m2 is not delayed at P4, because P4 is not a

member of G1. And rn3 is not delayed at P2, because P2 has already received ml and it

was the sender of ms.

Pl

P2

P3

P4

0,,),(,,0, 0,0)) f

":'--.."" /m4:

,ms: ((1,0,0, ,1,(,, 1,0,0)) ___
I

I

.: m3:((1,0,0,,1,(,,1,0,111

Figure 2: Messages sent within process groups. G1 = {pl,p2,p3} and Gs = {Ps,P3,P4}

The proof of Section 3 adapts without difficulty to this new situation; we omit the nearly

identical argument. One can understand the modified VT protocol in intuitive terms. By

ignoring the vector timestamps for certain groups in step 2.3', we are asserting that there

is no need to be concerned that any undelivered message from these groups could causally

precede m. But, the ignored entries correspond to groups to which P1 does not belong,

and it was assumed that all communication is done within groups.

4.2 Use of partial vector timestamps

Until the present, we have associated with each message a vector time or vector times

having a total size determined by the number of processes and groups comprising the
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application.Althoughsucha constraintarisesin manypublishedCBCAST protocols,

the resulting vector sizes would rapidly grow to dominate message sizes. A substantial

reduction in the number of vector timestamps that each process must maintain and trans-

mit is possible in the ca_.e of certain communication patterns, which are defined precisely

below. Even if communication does not always follow these patterns, our new solution

can form the basis of other slightly more costly solutions which are also described below.

Define the communication structure of a system to be an undirected graph CG = (G, E)

where the nodes, G, correspond to process groups and edge (gl, g2) belongs to E iff there

exists a process p belonging to both gl and g2. If the graph so obtained has no biconnected

component 4 containing more than k nodes, we will say that the communication structure

of the system is k-boumted. In a k-bounded communication structure, the length of the

largest simple cycle is k. 5 A 0-bounded communication structure is a tree (we neglect

the uninteresting case o_"a forest). Clearly, such a communication structure is acyclic.

Notice that causal communication cycles can arise even if CG is acyclic. For example,

in figure 2, message ml, m2, m3 and m4 form a causal cycle spanning both gx and g2.

However, the acyclic structure restricts such communication cycles in a useful way - such

cyles will either be simple cycles of length 2, or complex cycles.

Below, we demonstrate that it is unnecessary to transport all vector timestamps on each

message in the k-bound,,d case. If a given group is in a biconnected component of size k,

processes in this group need only to maintain and transmit timestamps for other groups

in this biconnected component. We can also show that they need to maintain at least

these timestamps. As a consequence, if the communication structure is acyclic, processes

need only maintain the timestamps for the groups to which they belong.

We proceed to the proot of our main result in stages. First we address the special case of

an acyclic communication structure.

Lemma 1: If a system has an acyclic communication structure, each process in the sys-

tem only maintains and multicast the VT timestamps o/ groups to which it belongs.

Notice that under this lemma, the overhead on a message is limited by the size and number

of groups to which a process belongs.

We wish to show that i_"message ml is sent (causally) before message ink, then ml will

be delivered before mk .'_t all overlapping sites. Consider the chain of messages below.

ml m2 m3 mk- I mk

pl ....> p2 ....> p3 ....> .... ----> pk ....> pk÷l

gI 82 g3 gk- 1 gk

This schema signifies that process Pl multicasts message ml to group gl, that process

P2 first receives message m{ as a member of group gl and then multicasts m2 to g2,

4Two vertices are in the same biconnected component of a graph if there is a path between them after

any other vertex has been removed.

SThe nodes of a simple cycle (other than the starting node) are distinct; a complex cycle may contain

arbitrary repeated nodes.
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and so forth. In general, gi may be the same as gj for i _ j and pi and pj may be

the same even for i _ j (in other words, the processes Pi and the groups gi are not

necessarily all different). Let the term message chain denote such a sequence of messages,

and let the notation mi-_-_mj mean that p transmits mj using a timestamp VT(mj) that

directly reflects the transmission of mi. For example, say that m_ was the k'th message

transmitted by process pi in group ga. We will write mi_m i iff VTa(pj)[i] >_ k and

consequently VTa(mj)[i] >_ k. Our proof will show that if mi---*mj and the destinations

of mi and m i overlap, then miami, where pj is the sender of mj.

We now note some simple facts about this message chain that we will use in the proof.

Recall that a multicast to a group ga can only be performed by a process pi belonging to

ga. Also, since the communication structure is acyclic, processes can be members of at

most two groups. Since mk and mt have overlapping destinations, and P2, the destination
of ml, is a member of gl and of g2, then gk, the destination of the final broadcast, is

either gl or g2. Since CG is acyclic, the message chain ml...mk simply traverses part of

a tree reversing itself at one or more distinguished groups. We will denote such a group

gr. Although causality information is lost as a message chain traverses the tree, we will

show that when the chain reverses itself at some group gr, the relevant information will

be "recovered" on the way back.

Proof of Lemma 1: The proof is by induction on l, the length of the message chain

ml...mk. Recall that we must show that if ml and mk have overlapping destinations, they

will be delivered in causal order at all such destinations, i.e ml will be delivered before

mk.

Base case. I = 2. Here, causal delivery is trivially achieved, since pk - p2 must be a

member of gl and mk will be transmitted with gl's timestamp. It will therefore be

delivered correctly at any overlapping destinations.

Inductive step. Suppose that our algorithm delivers all pairs of causally related mes-

sages correctly if there is a message chain between them of length I < k. We show

that causality is not violated for message chains where l = k.

Consider a point in the causal chain where it reverses itself. We represent this by

mr_ l .--*mr ---*mr, .--_mr +l , where mr-1 and mr+t are sent in gr-1 - gr+l by Pr and

Pr+l respectively, and m r and mr, are sent in gr by Pr and Pr'. Note that Pr and

pr+l are members of both groups. This is illustrated in Figure 3. Now, mr, will not

be delivered at pr+l until mr has been delivered there, since they are both broadcast
Pr P_Iin Gr. We now have mr-1 -'_ mr mr+l. We have now established a message

chain between ml and mt where l < k. So, by the induction hypothesis, ml will

be delivered before mk at any overlapping destinations, which is what we set out to

prove. []

We now proceed to prove the main theorem.
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Figure3: Causal Reversal

Theorem 1: Each pro,:ess Pi in a system needs only to maintain and multicast the VT

timestamps of groups Jr, the biconnected components of CG to which Pi belongs.

Proof: As with Lemma 1, our proof will focus on the message chain that established

a causal link between the sending of two messages with overlapping destinations. This

sequence may contain simple cycles of length up to k, where k is the size of the largest

biconnected component of CG. Consider the simple cycle illustrated below, contained in

some arbitrary message chain.

ml mc mc+l

pl ....> ... p2 ....> p3 .... >

gl gc El

Now, since Pl,/_ and P3 are all in groups in a simple cycle of CG, all the groups are in the

same biconnected comp,ment of CG, and all processes on the message chain will maintain

and transmit the times_,amps of all the groups. In particular, when mc arrives at p3, it

will carry a copy of Viral that indicates that ml was sent. This means that mc will not

be delivered at 1>3until ml has been delivered there. So mc+l will not be transmitted
Pa

by P3 until ml has been delivered there. Thus ml_m_+l. We may repeat this process

for each simple cycle of length greater than 2 in the causal chain, reducing it to a chain

within one group. We now apply Lemma 1, completing the proof. C3

Theorem 1 shows us wl_at timestamps are sufficient in order to assure correct delivery of

messages. Are all these timestamps in fact necessary? It turns out that the answer is yes.

It is easy to show that if a process that is a member of a group within a biconnected corn-
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ponentof CG does not mMntain a VT timestamp for some other group in CG, causality

may be violated. We therefore state without formal proof:

Theorem 2: If a system uses the VT protocol to maintain causality, it is both necessary

and su_ient for a process p_ to maintain and transmit those VT timestamps correspond-

ing to groups in the biconnected component of CG to which p_ belongs.

4.3 Extensions to arbitrary communication structures

In general, managing information concerning the biconnected components of CG may be

difficult, especially in a dynamic environment. We believe that the most practical use of

the above result is in the acyclic case, since a process can conservatively determine that it

is not in any cycle by observing that the group of which it is a member overlaps with at

most one other group - a completely local test (but see also Section 4.4.4). Consequently,

although all our results generalize, the remainder of the paper focuses on the acyclic

solution, and we initially implemented only the acyclic solution in Isls. In this section,

we give two protocols that work in more general communication structures. The first

protocol does not use any knowledge about the communication structure, but it sometimes

imposes delays on message multicasting. The second protocol does use knowledge about

the communication structure, but does not impose delays on message multicasting. We

then extend both protocols to arbitrary dynamic communication structures.

4.3.1 Conservative solution

Our first solution is denoted the conservative protocol. Each multicast m is followed by a

second multicast terminate (m) signifying that m has reached all of its destinations. The

sender of a multicast will normally know when to send the terminate as a side-effect of

the protocol used to overcome packet loss. The terminate message may sent as a separate

multicast, but it can also be piggybacked on the next CBCAST sent to the same group.

A terminate message is not itself terminated.

We will say that a group is active for process p, if:

1. p is the initiator of a multicast to g that has not terminated, or

2. p has received an unterminated multicast to g, or

3. p has delayed the local delivery of a multicast to g (sent by some other process p').

Note that this is a local property; i.e. process p may compute whether or not it is active

for some group g by examining its local state. The conservative multicast rule states that

a process p may multicast to group g iff g is the only active group for process p or p

has no active groups. Multicasts are sent using the VT protocol, as usual. Notice that

this rule imposes a delay only when two causally successive messages are sent to different
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groups.The conservative solution could be inefficient, but yields a correct VT protocol.

However, the overhead :It imposes could be substantial if processes multicast to several

different groups in quick succession, and it is subject to potential starvation (this can,

however, be overcome).

The conservative solution will work correctly even if group membership changes dynami-

caUy.

For brevity, we omit the correctness proof of this solution. The key point is that if

p multicasts m to g2 after gl has ceased to be active, then there are no undelivered

multicasts m _ in gl s.t. m_m. This can be demonstrated by showing that if gl is no

longer active and m'-.m, then m _ has terminated.

4.3.2 Excluded Groups

Assume that CG contains cycles, but that some mechanism has been used to select a

subset of edges X such that CG _ = (G, E - X) is known to be acyclic. We extend our

solution to use the acycLic VT protocol for most communication within groups. If there

is some g_ such that (g. g_)EX we will say that group g is an excluded group and some

multicasts to or from g _vill be done using one of the protocols described below.

Keeping track of excluded groups could be difficult; however it is easy to make pessimistic

estimates (and we will derive an protocol that works correctly with such pessimistic es-

timates). For example, m Isls, a process p might assume that it is in an excluded group

if there is more than one other neighboring group. This is a safe assumption; any group

in a cycle in CG will certainly have two neighboring groups. This subsection and the two

that follow develop solutions for arbitrary communication structures, assuming that some

method such as the previous is used to safely identify excluded groups.

4.3.3 Combining the VT and LT protocols

Recall the LT multicasl protocol presented in Section 3. The protocol was inefficient,

but required that only a single timestamp be sent on each message. Here, we run the

LT and VT protocols simultaneously, piggybacking on each message both LT and VT

timestaznps, and apply a unified version of the LT and VT delivery schemes on receipt.

The LT timestamp is not incremented on every broadcast; it is only incremented on certain

broadcasts as described below. This greatly reduces the number of extra messages that

would be induced by the basic LT algorithm.

Say that m is to be multicast by p to group g. We say that p is not safe in g if:

• The last message p received was from some other group g_.

• Either g or g_ is aJ_ excluded group.

17



Our protocol rule is simple;on sending,if processp is not safe in group g, p will incre-

ment both its' LT timesamp and its' VT timestamp before multicasting a message to g.

Otherwise, it will just increment its' VT timestamp. A message is delivered when it is

deliverable according to both the LT delivery rule and the VT delivery rule.

Notice that the pinging overhead of the LT protocol is incurred only when logical clock

values actually change, which is to say only on communication within two different groups

in immediate succession, where one of the groups is excluded. That is, if process p executes

for a period of time using the VT protocol and receives only messages that leave LT(p)

unchanged, p will ping each neighbor processes at most once. Clocks will rapidly stabilize

at the maximum existing LT value and pinging will then cease.

Theorem 3: The combined VT-LT protocol will alwa_ts deliver messages correctly in ar-

bitrary communication structures.

Proof: Consider an arbitrary message chain where the first and last messages have over-

lapping destinations. Without loss of generality, we will assume that gl...gk are distinct.

We wish to show that the last message will be delivered after the first at all such destina-
tions.

ml m2 m3 mk- 1 mk

pl .... > p2 ....> p3 ....> .... ----> pk ....> pk+l

gI g2 g3 gk- 1 gk

If none of gl...gi is an excluded group, then, by Lemma 1, ml will be delivered before

mk at all overlapping destinations. Now, if some group gi is excluded, two cases arise -

either the last group, gk is excluded, or some other group is excluded. If gk is excluded,

then pk will increment its LT timestamp at some point between delivering ink-1 and

sending ink. If some other group gi is excluded, i < k, then pk+l will increment its LT

timestamp between delivering mk and sending mk+l. So the LT timestamp of mk will

always be greater than the LT timestamp of ml, and mk will be delivered after ml at all

overlapping destinations. O

4.4 Dynamic membership changes

We now considerthe issueof dynamic group membership changes when using the com-

bined protocol.This raisesseveralissuesthatareaddressedinturn:virtuallysynchronous

addressingwhen joinsoccur,initializingVT timestamps, atomicitywhen failuresoccur,

and the problem of detectingpropertiesofCG at runtime,such as when a processdeter-

mines thatits'group adjoinsat most on one otherand hence always usesthe acyclicVT

protocol.
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4.4.1 Joins

To achieve virtually synchronous addressing when group membership changes while multi-

casts are active, we introduce the notion of flushing the communication in a process group.

Consider a process group g in group view viewi(g). Say that a new view view,+l(g) now

becomes defined. Ther(, are two cases: viewi+l(g) could reflect the addition of a new

process, or it could reflect the departure (or failure) of a member. Assume initially that

view changes are always due to adding new processes (we handle failures in Section 4.4.3).

We will flush communication by having all the processes in viewi+l(g) send a message

"flush i+l of g", to all other members. During the period after sending such messages

and before receiving such a flush message from all members of viewi+l(g) a process will

accept and deliver messages but will not initiate new multicasts.

Because communication is FIFO, if process p has received a flush message from all mem-

bers of g under view i _- 1, it will first have received any messages sent in view i. It

follows that all communication sent prior to and during the flush event was done using

VT timestamps corresponding to viewi(g), and that all communication subsequent to

installing the new view is sent using VT timestamps for viewi+l (g). This establishes that
multicasts will be virtually synchronous in the sense of Section 2.

4.4.2 Initializing VT fields

Say that process pj is .ioining group go. Then pj will need to obtain the current VT

values for other group members. Because pj participates in the flush protocol, this can

be achieved by having _,ach process include its VT value in the flush message, pj will

initialize VTa[i] with the value it receives in the flush message from Pi; Pj initializes

VTa[j] to 0.

4.4.3 Failure atomicity

What about the case where some member of g fails during an execution? viewi+l(g) will

now reflect the departure of some process. Assume that process pj has received a message

m that was multicast by process pi. If pi now fails before completing its multicast, there

may be some third process Pk that has not yet received a copy of m. To solve this problem,

pj must retain a copy oi all delivered messages, transmitting a copy of messages initiated

by Pi to other members of view(g) if Pi fails. Processes identify and reject duplicates.

Multicasting now becomes the same two-phase protocol needed to implement the conser-

vative rule. The terminate message indicates which messages may be discarded; it can

be sent as a separate m,_ssage or piggybacked on some other multicast.

On receiving viewk(g) iltdicating that Pi failed, pj runs this protocol:

1. Close the channel to Pi.
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2. Forany unterminated multicast m initiated by Pi, send a copy of m to all processes

in viewk(g) (duplicates are discarded on reception).

3. Send a flush message to all processes in viewk(g).

. Simulate receipt of flush and ack messages from Pi as needed by the channel and

view flush protocols, and treat any message being sent to pi as having been delivered

in the conservative protocol (Section 4.3.1).

5. After receiving flush messages from all processes in viewk(g), discard any messages

delayed pending on a message from pi.

6. pj ceases to maintain VTg[i].

Step 2 ensures atomicity and step 4 prevents deadlock in the VT, LT and the conservative

protocol. Step 5 relates to chains of messages ml--*m2 where a copy of m2 has been

received but ml was lost in a failure; this can only happen if every process that received

mx has failed (otherwise a copy of ml would have been received prior to receipt of the

flush message). In such a situation, m2 will never have been deliverable and hence can
be discarded.

This touches on an important issue. Consider a chain of communication that arises

external to a process group but dependent on a multicast within that group. Earlier, we

showed that causal delivery is assured by the acyclic VT protocol, but this assumed that

multicasts would not be lost. Instead, say that processes Pl and P2 belong to group gl and

that process P2 also belongs to g2. Pl multicasts ml to gl; P2 receives ml and multicasts

m2 to g2. Now, if Pl and P2 both fail, it may be that ml is lost but that m2 is received

by the members of gl n g2 that are still operational.

Several cases now arise, all troubling. Consider a process q that receives m2. If q receives

m2 prior to running the failure protocol, it will discard it under step 5. If q receives

m2 after running the failure protocol, however, it will have discarded the VT field corre-

sponding to Pl. m2 will not be delayed pending receipt of ml and hence will ultimately

be delivered, violating causality. (q cannot discard m2 because it may have been deliv-

ered elsewhere.) We thus see that both causality and atomicity could be violated by an

unfortunate sequence of failures coincident with a particular pattern of communication,

and that the system will be unable to detect that this has occurred.

One way to avoid this problem is to require that processes always use the conservative

rule of Section 4.3.1, even if the communication structure is known to be acyclic. In our

example, this would prevent p2 from communicating in g2 until ml reached its destinations.

Recall that step 4 of the protocol given above prevents the conservative rule from blocking
when failures occur.

An alternative is to accept some risk and operate the system unsafely. For example,

a process might be permitted to initiate a multicast to group g only if all of its own
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multicaststo other groupshavebeendeliveredto at leastoneotherdestinationprocess;
this yieldsa protocolto]erantof anysinglefailure. 6
Givena 1-resilientprotocol,the sequenceof eventsthat couldcause causal delivery to be

violated seems quite unlikely. A k-resilient protocol can be built by also delaying receivers;

for large k, this reverts 70 the conservative approach.

We believe that even foI a 1-resilient protocol, the scenario in question (two failures that

occur in sequence simult.meously with a particular pattern of communication) is extremely

improbable. The odds of such a sequence occurring is probably outweighed by the risk of

a software bug or hardware problem that would cause causality to be violated for some

mundane reason, like corruption of a timestamp or data structure.

Our initial implementation of bypass CBCAST uses the conservative solution between all

groups; i.e. all groups ale excluded. The VT protocol is used for communication within a

group. This version of I:_Is is thus immune to the causality and atomicity problems cited

above, but incurs a high overhead if processes multicast to a series of groups in quick

succession, which is not uncommon. Our plan is to modify the implementation to use

the more optimistic protocols in a 1-resilient manner, but to provide application designers

with a way to force the system into a completely safe mode of operation if desired. It
should be noted that limitations such as this are common in distributed systems; a review

of such problems is included in [BJ89]. We are not alone in advocating a "safe enough"

solution in order to increase performance.

4.4.4 Dynamic communication graphs

A minor problem arises in applications having the following special structure:

1. The combined VT-LT protocol is in use.

2. Processes may lea-e groups other than because of failures (in Isls, this is uncommon

but possible).

3. Such a process may later join other groups.

Earlier, it was suggested that a process might observe that the (single) group to which

it belongs is adjacent to just one other group, and conclude that it cannot be part of a

cycle. In this class of applications, this rule may fail.

To see this, suppose that a process p belongs to group gl, then leaves gl and joins g2. If

there was no period during which p belonged to both gl and g2, P would use the acyclic

VT protocol for all communication in both gl and g2. Yet, it is clear that p represents a

path by which messages sent in g2 could be causally dependent upon messages p received

6When using a transport facility that exploits physical multicast such a message will most often have

reached all of its destinations.
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in gl, leading to a cyclic message chain that traverses gl and g2. This creates a race

condition under which violations of the causal delivery ordering could result.

This problem can be overcome in the following manner. Associate with each group a

counter of the number of other groups to which it has ever been adjacent; this requires

only a trivial extension of the flush protocol. Moreover, say that even after a process p

leaves a group gl, it reports itself as a one-time member of gl. If p joins some group g2,

the adjacency count for g2 will now reflect its prior membership, and if a causal chain

could possibly arise, multicasts will be under the exclusion rule. Clearly, this solution

is conservative and could be costly. On the other hand, say that it is known that all

multicasts terminate within some time delay a. Then one could decrement the adjacency

counter for a group after a delay of a time units without risk. In Isls, a reasonable value
of a would be on the order of 2-3 seconds.

We have developed more sophisticated solutions to this problem, but omit these because

the issue only arises in a small class of applications, and the methods and their proofs are

complex.

4.4.5 Recap of the extended protocol

In presenting our algorithm as a basic scheme to which a series of extensions and modi-

fications were made, we may have obscured the overall picture. We conclude the section

with a brief summary of the protocol as we intend to use it in Isis.

The protocol we ultimately plan to use in Isis is the acyclic VT solution combined with the

LT protocol. This protocol piggybacks an LT timestamp and a list of VT timestamps on

each message, one VT vector for each group to which the sender of the message belongs.

In addition to the code for delaying messages upon reception, the protocol implements

the channel- and view-flush and terminate algorithms.

Under most conditions the Isls system will be operated conservatively, excluding groups

adjacent to more than one neighboring group. As noted above, neighboring groups can

be counted by piggybacking information on the view-flush protocol. Looking to the

future, we expect to develop Isls subsystems that will have special a-priori knowledge

of the communication structure. These subsystems will make use of an Isls system call

pg_QxcludQ (gname, TRUE/FALSE) toindicatetheexclusionstatusofgroups.We curently

have no plans to develop sophisticatedcommunication topology algorithmsforIsls.

The initialIslsimplementation consistsof the VT scheme and the conservativerule,

togetherwith the view-flushand terminateprotocols.We expectto add the LT extension

shortly;the necessarycode issmall compared to what isalreadyrunning.
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5 Other communication requirements

In this section we consider some minor extensions of the protocol for other common

communication requirements.

5.1 A Bypass ABCAST protocol

Readers may wonder if the bypass CBCAST protocol can be extended into a fast AB-

CAST mechanism. ABCAST is a totally ordered communication protocol: all destina-

tions receive an ABCAST message in a single, globally fixed order.

The answer to this question depends on the semantics one associates with ABCAST

addressing. One way to define ABCAST is to say that two ABCAST's to the same

logical address will be ,otally ordered, but to make no guarantees about ordering for

ABCAST messages se:at to different addresses. A more powerful alternative is to say

that regardless of the destination processes, if two ABCAST's overlap at some set of

destinations, they are d._.livered in the same order. Although Isis currently supports the

latter approach, it is far easier to implement a bypass ABCAST with the weaker delivery

semantics; the resulting protocol resembles the one in [CM84]. This is in contrast with

bypass CBCAST, which always achieves causal ordering.

Associated with each view viewi(g) of a process group g will be a token holder process,

token(g)Eviewi(g). If the holder fails, the token is automatically reassigned to a live

group member using any well-known, deterministic rule. Assume that each message m is

uniquely identified by uid(m).

To ABCAST m, a pr_)cess holding the token uses CBCAST to transmit m. If the

sender is not holding the token, the ABCAST is done in stages:

1. The sender CBCAST's a needs-order message containing m. 7 Processes receiv-

ing this message delay delivery of m.

2. If a process holdillg the token receives a needs-order message, it CBCAST's a

sets-order message giving a list of one or more messages, identified by uid, and

the order in which to deliver them, which it may chose arbitrarily. If desired, a new

token holder may also be specified in this message.

3. On receipt of a sets-order, a process notes the new token holder and delivers

delayed messages in the specified order.

4. On detection of the failure of the token holder, after completing the flush protocol,

all processes sort pending ABCAST's and deliver them in any consistent order.

7It might appear cheaper to forward such a message directly to the token holder. However, for a

moderately large messages such a solution will double the IO done by the token holder, creating a likely

bottleneck, while reducing t*te IO load on other destinations only to a minor degree.
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This protocol is essentiallyidentical to the replicateddata protocolprovedcorrect in

[BJ89,Sch88]. Step 4 is correct because the flush ensures that any set-order messages

will have been delivered atomically, hence all processes will have the same enqueued

messages which they deliver immediately before installing the new view.

The cost of doing a bypass ABCAST depends on the locations where multicasts originate

and frequency with which the token is moved. If multicasts tend to originate at the same

process repeatedly, then once the token is moved to that site, the cost is one CBCAST

per ABCAST. If they originate randomly and the token is not moved, the cost is 1 + 1/k

CBCAST's per ABCAST, where we assume that one set-order message is sent for

ordering purposes once for every k ABCAST's. This represents a major improvement

over the existing Ism ABCAST protocol. However, because bypass ABCAST achieves

a weaker form of ordering, it might require changes to existing Isls applications. We have

not yet decided whether to make it the default.

5.2 Point-to-point messages

Early in the the paper, we asserted that asynchronous CBCAST is the dominant protocol

used in Isls. Point-to-point messages, arising from replies to multicast requests and and

RPC interactions, are also common. In both cases, causal delivery is desired. Here, we

consider the case of point-to-point messages sent by a process p within a group G to which

p belongs.

A straightforward way to incorporate point-to-point messages into our VT protocol is to

require that they be acknowledged and to inhibit the sending of new multicasts during

the period between when such a message is transmitted and when the acknowledgement is

received (in the case of an RPC, the reply is the acknowledgement). The recipient is not

inhibited, and need not keep a copy of the message. A point-to-point message is times-

tamped using the sender's logical and vector times, and delivered using the corresponding

delivery algorithms, but neither timestamp is incremented prior to transmission. In effect,

point-to-point messages are treated as events internal to the processes involved.

The argument in favor of this method is that a single point-to-point RPC is fast and

the cost is unaffected by the size of the system. Although one can devise more complex

methods that eliminate the period of inhibited multicasting, problems of fault-tolerance
render them less desirable.

5.3 Subset multicasts

Some Isis applications form large process groups but require the ability to multicast to

subsets of the total membership. Our protocol is easily extended into one supporting

subset multicast, and our initial Isis implementation supports this as an option. When

enabled, a VT vector timestamp of length sn is needed for a group with s senders and n

members.
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Forexample,a stockbrokeragemight supporta quote dissemination service with two or

three transmitters and hundreds of potential recipients. Rather than form a subgroup

for each stock (costly approach if there are many stocks), each multicast could be sent

to exactly those group members interested in a given quote. We omit the details of the
subset multicast extension.

6 Performance and transport protocol selection

In this section, we discu:;s the performance of our protocol. We show that the performance

of the bypass protocol will be largely dominated by the performance of the underlying

layer that is simply concerned with moving data from one site to others. We discuss the

design of some alternatives for this layer, which we are currently implementing.

6.1 Complexity and overhead of the protocol

Implementation of the bypass protocol was straightforward in Isls, requiring less than 1300

lines of code out of the total of 52,000 in the protocol layer of the system. Extensions

to support the LT protocol will add little additional code. Initial measurements of

performance demonstrate a five to tenfold speedup over the prior Isis protocols.

Our protocol has an overhead of both space and messages transmitted. The size of a

message will be increas('d by the vector time fields it carries; as noted above, the number

of such vectors is determined by the total cardinality of the groups to which the sender

belongs directly, and hence will be small. The number of overhead messages sent will

depend on the number of non-piggybacked terminatQ messages sent by the conservative

protocol and, when implemented, the frequency of LT pinging. In Isis, LT pinging is

expected to be rare and terminate messages are always piggybacked on a subsequent

CBCAST unless communication in a group quiesces. (As noted before, LT overhead can

be bounded using a periodic protocol, if necessary).

We believe that latency, especially when the sender of a multicast must delay before

continuing computatiozL, is the most critical and yet unappreciated form of overhead.

Delays of this form are extremely noticable. In many systen,:, there is only one active

computation at a given instant in time, or a single computation that holds a lock or other

critical resource. Delaying the sender of a multicast may thus have the effect of shutting

down the the entire system. In contrast, the delay between when a message is sent and

when it reaches a remote destination is less relevant to performance. The sender may

be delayed in two ways: if the transmission protocol itself is computationally costly, or

if a self-addressed multicast cannot be delivered promptly because it is unsafe to do so.

Defined in this sense, o_r method imposes latency on the sender of a multicast only in the

conservative protocol, and only when a process switches from multicasting in one group

to another, or needs to communicate in one group after receiving in another. Otherwise,

the protocol is totally asynchronous. Latency on the transport side is less critical. The

25



dominantsourceof transport latencyis LT pinging, and we plan to quantify this effect

by instrumenting Isis and using simulations.

6.2 Implementation

An interesting feature of the bypass facility is that it assumes very little about communi-

cation between processes, and communicates in an extremely regular manner. Specifically,

the protocol we ended with sends or multicasts only within groups to which a sending

process belongs, and requires only that inter-process communication be sequenced and

lossless. The idea of providing an interface by which the bypass muiticast protocols could

run over a lower-layer protocol provided by the application appealed to us, and as part of

the Isis implementation of bypass CBCAST and ABCAST, we included an interface

permitting this type of extension. We call this lower layer the multicast transport protocol.

A multicast transport protocol simply delivers messages reliably, in FIFO order, to the

groups or processes addressed.

When no special hardware for multicasting is available, the basic Isis multicast transport

protocol is based on UDP (unreliable datagrams). When multicasting hardware is avail-

able, Isls can switch to an experimental muiticast transport protocol that takes advantage

of such hardware. The remainder of this section details the design, performance and over-

head of these multicast transport protocols (in time, size, and messages exchanged per

multicast).

6.3 Overhead imposed by the basic VT Protocol

This section breaks down the costs we see in terms of various components of the overhead

(create a light weight task, do the I/O, select system call, create the packets, reconstruct

them on reception). Figure 4 breaks down the basic CPU costs of sending and receiving

messages in our implementation. These figures are preliminary and will be revised. These

figures are for the combined protocol, but they do not reflect higher level delays that

might be imposed by infrequent events such as LT pinging or the view flush. Our figures

were derived on a pair of SUN 3/60's doing continuous null RPC's from one to the other.

The RPC request was sent in a CBCAST; the result returned in a CBCAST reply

packet. A new lightweight task was created at the receiver to field each RPC request.

An Isis message is fairly complex and allows scatter/gather and arbritrary user-defined

and system-checked types. Since no attempt has been made to optimize message data

structures for the simple case of a null RPC, this accounts for a a large part of the time

spent in the messaging/task layer of the system.

The main conclusion from these measurements is that the CBCAST algorithms we derive

in this paper are quite inexpensive. Most of the time that a message spends in transit is

spent in the lower layers of the system. Clearly, the cost of UNIX messaging is beyond

our control, but a great deal can be said about multicast transport.
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Figure 4: Basic protocol overhead

6.4 Multicast transport protocol selection

The basic Isls multicast transport protocol is designed around a point-to-point model.

Each process in a group maintains a two-way reliable data stream with each other process

in the group. Whenever possible, acknowledgement information is piggybacked on other

packets, such as replies to an RPC or multicast. These streams are maintained indepen-

dently of each other; for brevity, we omit discussion of such details as flow control and

failure detection. This scheme has several advantages; it is relatively easy to understand,

as it is based on a well-known communication model. Since it is built on top of unreliable

datagrams_ it can be easily implemented on any network that provides this service. It has,

however, several disadwmtages - in particular, it does not scale well. The processing and

network transmission costs of communicating with a group rise linearly with the number

of processors in the group. In addition, as the number of processes in a group increases, a

process sending to the group may experience congestion at the network interface as many

acknowledgement or reply packets arrive more or less simultaneously from the other other

processes in the group.

We have therefore invesl igated the design of other multicast transport protocols. An ideal

multicast transport protocol would have the following features:

• It would be independent of network topology, but able to take advantage of features

of particular netw_)rks - e.g. a broadcast subnet.

• The cost of sending a message would be independent of the number of recipients of
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that message.

• It wouldworkefficientlyfor bothsmallandlargemessages.

• It wouldhavelow overhead,latencyandhighthroughput.

It is also important to note that frequently a multicast may give rise to many replies

directed to the original sender. We call such an occurrence a convergecast. This can

lead to congestion at the original multicast sender, with many of the replies being lost.

To avoid this, a multicast transport protocol should have some sort of mechanism for

co-ordinating and reliably delivering multicast replies. Similar considerations may apply

to acknowledgements; however acknowledgements need not be as timely as replies - the

multicast transport protocol has more freedom to delay them.

Generally speaking, a reliable multicast transport mechanism will be used in two distinct

modes. In the first, stream mode, one process will multicast a large amount of data to the

group before another process wishes to reply. Multicasting is continuous. This usage could

arise in, for example, a trading system, where the transport mechanism is being used to

disseminate quotes to trading stations. Another example is a replicated file system where
a client workstation is writing a file to a group of file servers. In rpc mode, many processes

multicast replicated rpc's to the group, where each rpc contains relatively little data, and

is much more likely to actually require a reply. Multicasts are not continuous, but bursty.

This could arise in maintaining and querying a distributed database or maintaining the

state of a distributed game. Note that the application using the multicast transport

protocol can provide hints as to which mode it thinks it is operating in. Intermediate

modes of usage can of course arise; we do not expect them to be common.

Reliable multicast transport protocols may be divided into two classes; those based on

positive acknowledgements, and those based on negative acknowledgements. Many pre-

vious proposals for reliable multicast transport protocols have been based on negative

acknowledgements, including [KTHBSg,AHL89,CM84]. (Some of these protocols, in ad-

dition to providing reliable transport, also provide transport ordering properties.) This is

because the designers of these protocols believed that a positive acknowledgement from

each receiving site would be expensive. We do not believe that this is so.

If a process group is largely communicating in rpc mode, reply messagcs will be converging

at the sender in any case. These reply messages can carry positive acknowledgements. In

addition, if there are many of these reply messages, they should be scheduled by some

mechanism to avoid congestion and message loss at the multicast sender. On the other

hand, if a group is largely communicating in stream mode, the issue of flow control becomes

very important. The sender can't send data faster than the slowest process in the group

can receive it; in order to avoid packet loss, there will be flow control packets coming

back to the sender from each other process in the group. Again, these packets may carry

positive acknowledgments, and again, they must be scheduled in order to avoid congestion

problems. The protocol has more flexibility in scheduling these packets than in scheduling

reply packets, since they do not contain data that needs to be delivered to the higher level.
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Thereareseveralpossiblemechanismsfor schedulingpacketsthat areconvergingon the
samedestination. Oneschemeis for the original senderto schedulethe packets;it will
decidehowmanyconcurrentacknowledgmentsor repliesit (andthenetwork)canhandle.
It thenscheduleseachgroupof acknowledgements.Thisschemeinvolvessomeextrawork
by the sender;it has ttte advantagethat the sendercamcontrol the rate at which the
packetscomebackdependingon whetheror not his clientis waitingfor replies.
Othermethodsinvolve1hereceiversco-operatingto ensurethat theydon't sendtoo many
packetsto thesenderal once.Onesuchmethodbasicallyinvolvespassingoneor several
tokensaroundthe grocp,with the holderof a tokenhaving the right to sendreply or
acknowledgementpacketsto the originalsender.If the repliesor acknowledgementsare
small,they canbeput on the tokenitself,which isreturnedto the senderwhenit is full.
Themainproblemwith thisschemeis that theacknowledgementor replymaytakealong
time to return to the originalsenderof a message.Thiscanbeovercomeby usinglarge
windowsizes,or by usinga largeenoughnumberof tokens.Anotherproblemis that the
overheadof receivinga messageis higher,becausean acknowledgementtokenmust be
receivedand transmitt_,dalso.This canbeovercomeby havingonetokenacknowledge
severalmessages,andby piggybackingthe acknowledgementtokenwhereverpossible.A
third problemis that t]:,elossof oneacknowledgementpacketmaycausea messageto be
retransmittedto multipledestinations.Webelievethat the extraoverheadis acceptable,
sincepacketlossshouldbe rare.
Another receiver-schedldedmethodfor handlingacknowledgementsor repliesis simply
to haveeachacknowledgementbe returnedat somerandomtime by the recipients.This
schemehasbeenextem,;ivelyanalyzedby [Dan89];the main problemis that in order to
avoidcongestionat theoriginalsender,the intervalfrom whichtherandomdelaysmustbe
pickedis very long. It is alsoof coursepossibleto combineseveralof the aboveschemes;
for example,acknowledgementscould be sender-scheduledin small groups;individual
acknowledgementswithin eachgroupcouldbe further randomlydelayed.
We are implementingmulticast transport protocolswith severalof the convergecast-
avoidanceschedulingstrategiesdescribedabove,and will experimentwith them as al-
ternativesto the basicISISmulticasttransportprotocol. Ourimplementationsarebased
on the multicastUDP softwareof [Dee88],whichprovidesa logicalunreliablemulticast
acrossinternetsindependentlyof whetherthe underlyingnetworkssupportphysicalmul-
ticast. Full detailsof T,hedesignand implementationof theseprotocolswill be found
in [Steg0].We will imdudeperformancemeasurementsfor the bypassCBCAST and
ABCAST protocolsrunningover thesetransport protocolsin the final versionof the
paper.
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7 Related Work

There has been a great deal of work on multicast primitives. CBCAST-like primitives

are described in [B:I87,PBS89,VRB89,SES89,LL86] As noted earlier, our work is most

closely related to that of Ladkin and Peterson. Both of these efforts stopped at essentially

the point we reached in Section 3 arriving a protocols that would perform well within a

single small group, but subject to severe drawbacks in systems with large numbers of pro-

cesses and of overlapping, dynamically changing process groups. Pragmatic considerations

stemming from our desire to use the protocol in ISIS motivated us to take our protocol

considerably further. We believe the resulting work to be interesting from a theoretical

perspective. Viewed from a practical perspective, a causal multicast protocol that scales

well and imposes little overhead under typical conditions certainly represents a valuable
advance.

ABCAST-like primitives are reported in [CM84,B:I87,GMS89,PGM85]. Our ABCAST

protocol is motivated by the Chang-Maxemchuck solution [CM84], but is simpler and

faster because it can be expressed in terms of a virtually synchronous bypass CBCAST.

In particular, our protocol avoids the potentially lengthy delays required by the Chang-

Maxemchuck approach prior to committing a message delivery ordering. We believe this

argues strongly for a separation of concerns in particular, a decoupling process group

management from the communication primitive itself.

We note that of the many protocols described in the literature, very few have been imple-

mented, and many have potentially unbounded overhead or postulate knowledge about

the system communication structure that might be complex to deduce. This makes direct

performance comparisons difficult, since many published protocols give performance esti-
mates based on simulations or measure dedicated implementations on bare hardware. We

are confident that the Isis bypass communication suite gives performance fully competi-

tive with any alternative. The ability to extend the transport layer will enable the system

to remain competitive even in settings with novel architectures or special communication

hardware.

The ability to run the bypass protocols over new transport protocols raises questions for

future investigation. For example, one might run bypass CBCAST over a transport

layer with known realtime properties. Depending on the nature of these properties, such

a composed protocol could satisfy both sets of properties simultaneously, or could favor

one over the other. For example, the delay of flushing channels suggests that realtime

and virtual synchrony properties are fundamentally incompatible, but this still leaves

open the possibility of supporting a choice between weakening the realtime guarantees

to ensure that the system will be virtually synchronous and weakening virtual synchrony

to ensure that realtime deadlines are always respected. For many applications, such a

choice could lead to an extremely effective, tuned solution. Pursuing this idea, we see

the Isis system gradually evolving into a more modular structure composed of separable

facilities for group view management, enforcing causality, transporting data, and so forth.
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For a particular setting,one wouldselectjust thosefacilitiesactually needed.Sucha
compositionalprogrammingstylehasbeenadvocatedby others,notablyLarry Peterson
in his researchon the Psyncsystem.

8 Conclusions

We have presented a n_w scheme, the bypass protocol, for efficiently implementing a re-

liable, causally ordered multicast primitive. Intended for use in the Isis toolkit, it offers

a way to bypass the most costly aspects of Isis while benefiting from virtual synchrony.

The bypass protocol is inexpensive, yields high performance, and scales well. Measured

speedups of more than an order of magnitude were obtained when the protocol was im-

plemented within Isls. Our conclusion is that systems such as Isis can achieve perfor-

mance competitive wit]: the best existing multicast facilities - a finding contradicting the

widespread concern that fault-tolerance may be unacceptably costly.
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